Abnormal Security Logo

Abnormal Security

Senior Machine Learning Engineer - Attack Detection

Posted 3 Days Ago
Remote
Hiring Remotely in USA
195K-230K Annually
Senior level
Remote
Hiring Remotely in USA
195K-230K Annually
Senior level
The Senior Machine Learning Engineer will design and implement detection systems to improve email security, lead project execution, and mentor junior engineers.
The summary above was generated by AI
About The Role

Abnormal Security is looking for a Senior Machine Learning Engineer to join the Message Detection Decisioning team. At Abnormal, we protect our customers against nefarious adversaries who are constantly evolving their techniques and tactics to outwit and undermine the traditional approaches to Security. That’s what makes our novel behavioral-based approach so…Abnormal. Abnormal has constantly been named as one of the top cybersecurity startups and our behavioral AI system has helped us win various cybersecurity accolades resulting in being trusted to protect more than 8% of the Fortune 1000 ( and ever growing ).

In a landscape where a single successful attack can lead to financial losses of millions of dollars, the Message Detection Decisioning team plays the central role of building an extremely precise Detection Engine that can operate on hundreds of millions of messages at milliseconds latency. Every email ingested by Abnormal flows through the workflow owned by the Detection Decisioning team which applies hundreds of signals and detectors on a message based on the message and user context. The system then computes the final overall decision for the system and consequently chronicles attribution to drive various offline and online metrics such as offline precision, online precision, online False Negative Rate etc.

This team is solving a multi-layered detection problem, which involves modeling communication patterns to establish enterprise-wide baselines, incorporating these patterns as robust signals, and combining these signals with contextual information to create extremely high precision systems. The team builds discriminative signals at various levels including message level (eg. presence of particular phrases), sender-level (eg.frequency of sender) and recipient level (eg.likelihood of receiving a safe message) which forms the foundation to create highly accurate heuristic and model based detectors. Additionally to maintain an overall high precise detection system, the team innovates on software systems and processes which can be quickly adapted to solve trends seen in the short term as well as generalize well in the longer term.

This role would also have an opportunity to have a huge impact on the overall charter,  direction and growth of the team. The Senior Machine Learning Engineer would be involved in understanding the most pressing customer problems in the domain of false positives and build out the associated technical roadmap to continuously operate our detection decisioning system at an extremely high precision.

What You Will Do 
  • Design and implement systems that combine rules, models, feature engineering, and business and product inputs into an email detection product.
  • Identify and recommend new features groups or ML model approaches that can significantly improve detection efficacy for a product. Work with infrastructure & systems engineers to productionize  signals to feed into the detection system.
  • Understand features that distinguish safe emails from email attacks, and how our detector stack enables us to catch them. 
  • Be the expert in main detection pipelines and decision data flow to be able to drive debugging in systematic degradations caused by bad detectors.
  • Writes code with testability, readability, edge cases, and errors in mind.
  • Train models on well-defined datasets to improve model efficacy on specialized attacks
  • Actively monitor and improve False Positive rates and efficacy rates for our message detection product attack categories, through  feature engineering, rules and ML modeling.
  • Analyze False Negative and False Posi datasets to categorize capability gaps and recommend short term feature and rule ideas to improve our detection efficacy.
  • Contribute in other areas of the stack: building and debugging data pipelines, or presenting results back to customers in our tools when the occasion arises
  • Lead the team’s medium and long term roadmap and drive planning and execution strategy for the pod.
  • Coach and mentor junior engineers to uplevel their code quality and ML effectiveness by providing quality code reviews and design reviews.
  • Participate in building a world-class detection engine across all layers - data quality, feature engineering, model development, experimentation and operation.
Must Have 
  • Track record of success in translating business requirements into scalable, maintainable systems with a bias toward simpler but iterative systems.
  • 4+ Experience with production ML systems - understands the pillars of a modern ML stack and the development, maintenance and  tuning processes of ML models.
  • Uses a systematic approach to debug both data and system issues within ML / heuristics models.
  • Fluent with Python and machine learning libraries like numpy and scikit-learn.
  • Experience with data analytics and wielding SQL+pandas+spark framework to both build data and metric generation pipelines, and answer critical questions about system efficacy or counterfactual treatments. 
  • Independently responsible for the entire lifecycle of projects or features including eng design, development, and deployment.
  • Works well with other stakeholders - has worked with cross-functional teams to drive projects over the finish-line.
  • Machine learning academic background (Bachelor's degree in Computer Science or related fields).
Nice to Have 
  • MS degree in Computer Science, Electrical Engineering or other related engineering field
  • Experience with big data or statistics
  • Familiarity with cyber security industry
This Position Is Not
  • A role focused on optimizing existing machine learning models 
  • A research-oriented role that's two-steps removed from the product or customer
  • A statistics/data science meets ML role

#LI-RT1

At Abnormal AI, certain roles are eligible for a bonus, restricted stock units (RSUs), and benefits. Individual compensation packages are based on factors unique to each candidate, including their skills, experience, qualifications and other job-related reasons. 

Base salary range:
$195,000$230,000 USD

Abnormal AI is an equal opportunity employer. Qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability, protected veteran status or other characteristics protected by law. For our EEO policy statement please click here. If you would like more information on your EEO rights under the law, please click here.

Top Skills

Numpy
Pandas
Python
Scikit-Learn
Spark
SQL

Similar Jobs

An Hour Ago
Remote or Hybrid
8 Locations
84K-104K Annually
Junior
84K-104K Annually
Junior
eCommerce • Fintech • Hardware • Payments • Software • Financial Services
As an Inside Sales Account Executive, you will convert inbound leads into customers, perform outbound prospecting, and manage the sales cycle from start to finish, working closely with other teams to ensure customer satisfaction and achieve revenue goals.
Top Skills: Salesforce
An Hour Ago
Remote or Hybrid
8 Locations
84K-104K Annually
Junior
84K-104K Annually
Junior
eCommerce • Fintech • Hardware • Payments • Software • Financial Services
The Inside Sales Account Executive will convert inbound leads into customers and engage in outbound prospecting, managing the full sales cycle while meeting revenue goals.
Top Skills: Salesforce
An Hour Ago
Remote or Hybrid
8 Locations
161K-284K Annually
Senior level
161K-284K Annually
Senior level
eCommerce • Fintech • Hardware • Payments • Software • Financial Services
Lead the development of machine learning systems for fraud detection and risk modeling at scale, collaborating across teams and influencing ML strategy.
Top Skills: AWSGCPMlflowModeMySQLNumpyPandasPysparkPythonPyTorchScikit-LearnSnowflakeTableauTensorflow/KerasXgboost

What you need to know about the Chicago Tech Scene

With vibrant neighborhoods, great food and more affordable housing than either coast, Chicago might be the most liveable major tech hub. It is the birthplace of modern commodities and futures trading, a national hub for logistics and commerce, and home to the American Medical Association and the American Bar Association. This diverse blend of industry influences has helped Chicago emerge as a major player in verticals like fintech, biotechnology, legal tech, e-commerce and logistics technology. It’s also a major hiring center for tech companies on both coasts.

Key Facts About Chicago Tech

  • Number of Tech Workers: 245,800; 5.2% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: McDonald’s, John Deere, Boeing, Morningstar
  • Key Industries: Artificial intelligence, biotechnology, fintech, software, logistics technology
  • Funding Landscape: $2.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Pritzker Group Venture Capital, Arch Venture Partners, MATH Venture Partners, Jump Capital, Hyde Park Venture Partners
  • Research Centers and Universities: Northwestern University, University of Chicago, University of Illinois Urbana-Champaign, Illinois Institute of Technology, Argonne National Laboratory, Fermi National Accelerator Laboratory

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account